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The effects of finite gap and various dilute solution properties on the previously 
studied purely elastic Taylor-Couette instability reported by Muller et al. (1989) 
and Larson et al. (1990) are investigated. The dilute solution properties which we 
consider are the ratio of the second to the first normal stress coefficient, Y2/Yl,  and 
the ratio of the solvent to the polymer contribution to the shear viscosity, S. Linear 
stability predictions for the flow of an Oldroyd-B fluid are presented over a wide 
range of Deborah number, De, gap ratio, e,  and S. In addition, the Oldroyd-B model 
is modified to include second normal stress differences, and new stability predictions 
are presented for small negative and small positive Y2/Yl. Both the critical 
conditions and changes in the flow structure are presented. It is demonstrated that 
finite-gap effects are stabilizing even for relatively small gap ratios (0 < e < 0.35). 
Furthermore, it is shown that there are two possible flow structures which can be 
chosen near the onset of instability: a standing wave structure (i.e. radially 
propagating vortices) or a travelling wave (i.e. vortices propagating up or down the 
coaxial cylinders). However, the strength and both the axial and radial dimensions 
of these vortices depend markedly on the gap, with both dimensions decreasing as 
the gap ratio increases. Thus, the number of vortices filling the gap increases with the 
gap ratio. 

In a second study, we show that the instability is sensitive to the presence of 
second normal stress differences. Positive second normal stress differences are shown 
to be destabilizing, while negative differences are strongly stabilizing. Furthermore, 
when both finite-gap effects and small negative second normal stress differences are 
included, the predicted gap dependence of the critical De is in good agreement with 
previous measurements on the flow of a dilute polyisobutylene solution. Finally, we 
present new measurements of the critical values of the De for a series of dilute, 
viscous polystyrene solutions, for which Y2 was found to be near zero. We find that 
as the polymer concentration increases (and therefore S decreases) the critical 
Deborah number decreases, in qualitative agreement with the theoretical predictions. 

1. Introduction 
In previous publications (Muller, Larson & Shaqfeh 1989 and Larson, Shaqfeh & 

Muller 1990, hereinafter referred to as I and I1 respectively) we demonstrated that 
the low-Reynolds-number Taylor-Couette flow of a highly elastic fluid becomes 
unstable beyond a certain critical value of the Deborah number, De, which we 
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defined as the product of a characteristic polymer relaxation time and the shear 
rate in the Couette cell. Visualizations of the Taylor-Couette flow demonstrated that 
the plane shearing motion, associated with the flow a t  small values of De, is 
transformed into a cellular flow beyond a certain critical Deborah number. I n  
addition, this critical value increases markedly as the ratio of the gap width to the 
radius of either cylinder decreases. In  contrast with the transition first described by 
Taylor (1923), the instability of these highly elastic fluids occurs at very small values 
of the Taylor number, which is a measure of the ratio of centrifugal to  viscous forces 
in the system. Thus, the instability is unrelated to inertial forces. This inference is 
reinforced by the observation that the transition occurs whether the inner or outer 
cylinder is rotated alone. In  addition, the flow structure is characterized by a fairly 
small axial cell wavelength (i.e. apparently smaller than one gap width in length). 
Other characteristics of this transition include the observation that the cells are not 
completely regular and that time traces of the torque on the rotating cylinder a t  the 
transition show growing oscillations. All these experimental observations are 
reproducible with the same fluid, if the period following the transition is not too long. 
For fluids which had been subjected to the cellular flow for long periods of time, the 
viscoelastic properties of the solution showed evidence of flow-induced degradation. 
For details of these experiments, reference should be made to I and 11. 

Along with these experimental observations, we presented a linear stability 
analysis of the Taylor-Couette flow of an Oldroyd-B fluid in the limit of small gap. 
Note that this model has been shown to describe the steady flow of a restricted class 
of fluids known as Boger fluids (Boger 1977/78) even when the characteristic 
Deborah number is O( 1) and the fluids are thus highly elastic. A Boger fluid is a dilute 
solution of high-molecular-weight polymer dissolved in a viscous solvent. The high 
viscosity of the solvent produces a long characteristic relaxation time and ensures 
that the elastic forces remain important at flow rates low enough such that inertial 
effects remain small. We demonstrated that the Taylor-Couette flow of an Oldroyd- 
B fluid is, indeed, unstable past a critical value of the Deborah number even a t  
vanishingly small Taylor number. The unstable mode is oscillatory (overstable) and 
characterized by an oscillation frequency which is of the order of the inverse 
characteristic polymer relaxation time. The mechanism for this instability involves 
the transfer of energy from the base flow to a fluctuation-induced radial normal 
stress. The predicted instability is therefore independent of centrifugal forces and 
occurs identically if either the inner or outer cylinder is rotated alone. A comparison 
of the theoretically predicted critical Deborah number with the experimental 
measurements showed fairly good agreement if the characteristic relaxation time 
used in the comparison is that obtained from transient shear flow experiments. 

The purpose of the present communication is two-fold. First we wish to examine 
in greater detail the purely elastic instability discussed above. In this regard, we shall 
examine the structure of the flow predicted by the linear analysis. Therefore, we 
return to the stability eigenvalue problem presented previously, and examine the 
eigenmodes near the critical condition. In  the limit of small gap, it is demonstrated 
that there are four such modes-two decaying and two growing- whose cor- 
responding eigenvalues are complex conjugates as is characteristic of a standard 
Hopf bifurcation. Thus, if we restrict ourselves to the two most rapidly growing or 
critical modes, these represent travelling waves composed of tilted vortices which 
move in opposite directions along the axis of the Couette column. Another possible 
flow structure that could develop is a standing wave pattern produced by the sum 
of these two travelling modes; this corresponds to a radially propagating vortex 
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structure. In this pattern a vortex forms near the inner cylinder and simultaneously 
propagates and grows toward the outer cylinder. Typically, two vortices fill the 
channel a t  any particular time during the cycle. The standing wave structures are in 
good qualitative agreement with recent finite-element simulations of this flow 
(Northey, Brown & Armstrong 1989; Northey, Armstrong & Brown 1990). 

After examining the structure of the flow predicted in the small-gap limit, we turn 
to the second purpose of this communication in which we examine two new effects 
on this purely elastic instability. In  the first instance, we relax the small-gap 
assumption and examine fhite-gap effects. Calculations are presented for gap ratios 
in the range 0 < E < 1,  but the range 0 < E < 0.25 is emphasized. It is demonstrated 
that finite-gap effects are strong in this system. The flow is stabilized by these effects 
and the critical wavenumber is shifted to higher wavenumbers. However, the 
growing modes remain complex conjugates and both travelling wave and standing 
wave patterns can still be selected. Since the axial wavenumber has now increased, 
the travelling vortices are now of a higher aspect ratio. In addition, the radial 
wavenumber of the radially propagating standing wave structure also increases and 
thus a larger number of vortices fill the gap a t  any given time. The frequency of the 
overstable eigenfunctions is mildly increased. Finally, all of these effects are 
demonstrated to be strongest in the Maxwell fluid when the ratio of solvent to 
polymer viscosity, S, is identically zero. For larger values of S (in particular those 
values characteristic of Boger fluids used in our previous experiments (see I))  these 
effects are weaker though still significant. Thus, all the qualitative changes for 
Oldroyd-B fluids for arbitrary values of S can be predicted from the calculations 
involving the Maxwell fluid, but the effects are exaggerated in the latter calculations. 

In a second study, we consider the addition of second normal stress differences 
(which are absent from the Oldroyd-B model) into our description of the fluid 
rheology. We recall that Giesekus (1966, 1982) in some of the earliest work on elastic 
instabilities demonstrated that these stress differences could destabilize Taylor- 
Couette flow a t  zero Reynolds number, but only if they were large and positive. 
He also demonstrated that positive second normal stress differences destabilize the 
stationary inertial Taylor mode even if they are small. In the present study, we find 
that small positive second normal stress differences also destabilize the purely elastic 
oscillatory mode and, moreover, negative second normal stress differences are 
stabilizing. Since experiments indicate that increasing the concentration of polymer 
in solution creates increasingly negative second normal stress differences (see 
Keentok et al. 1980; Larson 1988), we expect that the critical Deborah number can 
be increased such that the instability appears to vanish simply by changing the 
polymer concentration in the fluid. Indeed, it is suggested that this might be an 
alternative means of measuring second normal stresses in relatively dilute polymer 
solutions. Again, we find that this effect is strongest for the Maxwell fluid, and 
declines as one increases the value of S. 

Our calculations which include finite-gap effects and small negative second normal 
stress differences are then compared to our previous experiments for the flow of a 
dilute viscous polyisobutylene solution. Good agreement is found between the theory 
and experiment, again, if the characteristic relaxation time chosen for comparison is 
that given by a stress relaxation experiment. This agreement includes the apparent 
stabilization (i.e. larger critical Deborah number) witnessed a t  very small gap which 
has not been explained heretofore via our small-gap theory. The presence of small 
negative second normal stresses is apparently a possible stabilizing factor. 

In the final experimental section of the paper, we investigate the effect of 
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FIGURE 1. The Taylor-Couette flow geometry with the nomenclature employed in the present 
discussion. 

increasing polymer concentration on the transition. Dilute polystyrene solutions are 
prepared at polymer concentrations ranging from 1000 to 6000 p.p.m. Rheological 
measurements of these solutions demonstrate that the shear viscosity and primary 
normal stress coefficient are slowly varying over a wide range of shear rate (small 
amounts of shear thinning are noticed only in the primary normal stress coefficients 
for shear rates in excess of 3 s-l). Second normal stress differences were measured in 
these solutions and found to be vanishingly small within experimental error. Thus, 
only the ratio 8 changed appreciably among the different solutions ; ranging from I .O 
to 6.3. Note that in our previous publications we have demonstrated that the 
stability criteria are identical for an Oldroyd-B fluid where S = 1 and for a Maxwell 
fluid. However, for values of S > 1 these criteria change significantly. Thus, the 
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experiments were planned to probe the behaviour of these instabilities in fluids 
ranging from one which was essentially a Maxwell fluid (in terms of its response to 
small fluctuations) to an Oldroyd-B fluid in which the solvent stress plays an 
important role in flow stability. Measured values of the critical Deborah number for 
the Taylor-Couette flow of these solutions demonstrated flow stabilization with 
increasing S (decreasing polymer concentration) in qualitative agreement with the 
theoretical predictions. However, the critical Deborah number was in general 
overpredicted for the flows at  all polymer concentrations. 

With this communication, we have begun the study of varying fluid rheology on 
the previously reported elastic instability. Since only relatively uncomplicated fluid 
rheologies have been considered, the theoretical and experimental parts of this area 
of research will be continued elsewhere. 

2. Flow structures predicted from linear stability theory in the small-gap 
limit 

In this section and in the Appendix, we return to the eigenvalue problem derived 
in I1 which governs the evolution of small disturbances in the Taylor4ouette flow 
of an Oldroyd-B fluid at zero Reynolds number. We recall in this context that the 
geometry of the flow and coordinate system are as pictured in figure 1,  and that the 
base state flow, uo, is well known and equivalent to that found in a Newtonian fluid 
in the same device. In addition, the analytic expression for the base state stress 
tensor, TO (which is composed of contributions from the polymeric material and the 
solvent in the Oldroyd-B model), is also available in 11. We have previously 
considered the evolution of small normal mode disturbances applied to these base 
states, viz. 

T = ~~+r(x)exp[- i (wt-az)] ,  (2 .1)  

u = uo+ V(x)exp[-i(wt-az)], (2 .2)  

where the amplitude functions r and V are functions of the gap variable, x, and 
where z is a coordinate running along the axis of the cylinders (cf. figure 1). In (2 .1)  
and (2 .2)  as in all of the discussion which follows, all lengths have been made 
dimensionless with the gap width, d,  and time with A,  the characteristic relaxation 
time of the polymer in the Oldroyd-B model. The characteristic complex frequency 
w determines whether the perturbations will grow (Im ( w )  = wi > 0) or decay 

The eigenvalue problem whose solution determines w in the limit of small gap 

U""-2a2U"+a4U+a3A(w,cDe2,S) U' = 0,  ( 2 . 3 a )  

u=u'=o, x = O , l .  (2 .3b)  

In (2 .3a ,  b) ,  U is the amplitude function for the radial component of the perturbation 
velocity (or, in other words, the radial component of Vin ( 2 . 2 ) )  and the prime refers 
to differentiation with respect to x. Note that the eigenvalues A were found to be 
purely imaginary, so U is, in general, complex. The critical conditions for instability, 
critical wavenumber, and so forth have all been discussed elsewhere (see I, I1 and 
the Appendix). The critical parameter is dDe. For given fluid properties and 
geometry, if we increase the cylinder rotation speed such that a certain critical value 
of this parameter is exceeded then a flow transition occurs through an oscillatory or 
overstable instability mode. In this discussion we concentrate on the possible flow 

(Wi < 0). 

ratio, c = d / R ,  4 1, has been derived in I1 and is included for completeness: 
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FIGURE 2.  The streamlines in the (z, 2)-plane corresponding to one of the two unstable eigenmodes 
for the Maxwell fluid. The flow is shown at  an instant in time at  the critical condition and is one 
full gap width across. Note that this mode propagates vertically upward with a velocity of one gap 
per polymer relaxation time, while the other unstable mode (i.e. the mirror image of this mode 
about the gap mid-plane) propagates downward with the same velocity. 

structures which are predicted from the linear analysis a t  the onset of instability. If 
the bifurcation is supercritical, then one of these possible structures will be selected 
if we remain arbitrarily close to (but slightly past) the critical condition. Our 
discussion will again be a summary of the more detailed description available in the 
Appendix. 

At the onset of instability in the elastic Taylor-Couette flow, there are two 
unstable modes which simultaneously grow in time. These modes are axisymmetric 
and composed of axially ‘stacked ’ vortices which propagate with equal and opposite 
axial velocities. Thus, the base flow undergoes a Hopf bifurcation at the transition. 
These modes can most easily be portrayed via their streamlines in the (x,z)-plane. 
The complex stream function for the disturbance in the (x, 2)-plane is 

Y = @(x) exp [i(az-wt)], @ = iU/a. (2.4a, b)  

In figure 2 we have plotted the real stream function corresponding to one of these 
two critical growing eigenmodes for the Maxwell fluid (S = 0). These stream 
functions were numerically calculated by solving the system (2.3) using the 
orthogonal shooting method described in 11. The mathematical expression for this 
stream function is 

-upu = v‘ cos (az- wrt)  + lir sin (az -d t )  ( 2 . 5 ~ )  

= ?Y cos 2~(2--7) + lir sin 2~(2--7),  (2 .5b )  
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FIQURE 3. A time sequence of the standing wave pattern in the (z,x)-plane created by the two 
unstable eigenmodes of the Maxwell fluid at  the critical condition. The sequence shows the growth 
of a vortex near the inner cylinder (left) and its propagation toward the outer cylinder (right) at 
a single fixed position along the axis of the cylinders. The time, 7 ,  is measured in units of the 
characteristic oscillation period, 2nA, where A is the polymer relaxation time. 
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where the superscripts ‘ r ’  and ‘ i ’  refer to the real and imaginary parts respectively 
and the subscript ‘u’  refers to the mode’s upward motion toward the increasing 
values of z. In (2.5b), we have rescaled the z-coordinate and time, t ,  with the 
wavelength of the critical disturbance and the period of its oscillation respectively. 

The vortex structure shown in this figure 2 is a travelling mode which modes ‘up’ 
the coaxial cylinders (i.e. in the direction in which the cells are tilted near the inner 
cylinder). There is an equivalent mirror-image structure which moves ‘down ’ the 
coaxial cylinders, and whose constituent vortices are tilted downward near the inner 
cylinder (see the Appendix). The mode selection will depend on the symmetry of the 
initial perturbation, the axial end conditions applied to the Taylor-Couette cell, and 
the stability of these structures to external perturbations. In general, two possible 
qualitatively different structures can develop : one in which only travelling modes 
(either ‘up ’ or ‘down ’ the cylinders) exist and one in which the two equivalent modes 
will be present equally. In the latter case the resulting stream function will be 
produced by the sum of the two eigenfunctions, and will be a standing wave pattern 
given by the expression 

- a!P = V cos 2n(Z - 7) + UC sin 2n(Z - 7) - V cos 2n(Z + 7) + UC sin 2n(Z + 7). (2.6) 

This flow is shown in figure 3, a t  various values of the dimensionless time, 7 .  The 
structure consists of radially propagating vortices, which form near the inner 
cylinder and grow radially, thus displacing vortices a t  larger values of the gap 
coordinate which coexist a t  any point in the cycle. In addition, at any point in the 
cycle as many as three vortices fill the gap; however, two of these are very weak and 
are positioned near the inner and outer cylinders respectively. More frequently, two 
vortices fill the channel. The cells in figures 2 and 3 are scaled with the correct 
relative dimensions (in gap width units) and thus we also see that the predicted cell 
structure consists of vortices which arc slightly smaller than one half-gap in height 
(which is consistent with the critical wavenumber of 6.7 determined in 11). The 
radially propagating vortex structure is in qualitative agreement with results from 
recent computer simulations of the fully nonlinear flow problem after the onset of the 
instability as presented by Northey et al. (1990). No axially propagating structures 
have been witnessed in any of the experiments or (to the author’s knowledge) in any 
simulations of this purely elastic instability. More work clearly needs to be done 
before one can conclusively disregard the formation of travelling waves in this 
system. At present, however, linear analysis can reproduce the wave patterns which 
result from the fully nonlinear problem solution. 

Note that although all of these calculations are for the Maxwell fluid, no 
qualitative changes in the linear structures were found for non-zero values of the 
viscosity ratio, 8. 

In all of the discussion and calculations presented in our previous publications, in 
the Appendix, and in the present section, we have concentrated on the small-gap 
limiting form of the stability problem. Previously, we derived the general eigenvalue 
problem which is valid for all gap ratios, and in the next section we examine the 
effects of finite-gap corrections on the flow stability. 

3. Finite-gap effects in the linear stability for 0 < E < 1 

To examine finite-gap effects, we return to the general stability eigenvalue 
equations derived in Appendix A of 11. These equations are quite general, 
encompassing inertial effects, second normal stress differences, arbitrary relative 
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rotation rate between the inner and outer cylinders, and so forth. Throughout the 
present study, we shall restrict our attention to the case of only the inner cylinder 
rotating, while keeping in mind that it is only in the limit of small gap that the 
stability is governed by the value of (sZ,--522)2,’cf. (2.3). Thus, the stability 
characteristics for finite gap may differ significantl$ depending, for example, on 
whether we rotate the inner or outer cylinder alone, &Ten if they are rotated at the 
same rate. In addition, for the analysis presented in this Section we,shall neglect both 
inertial effects and second normal stress differences. The ,latter will be considered in 

With the aforementioned restrictions, the eigenvalue problem governing small 
§ 4. 

disturbances in the Taylor-Couette flow of an Oldroyd-B fluid becomes 

V”-a2V= aU”+bU’+cU+dV‘+eV, 

U””-2a2U”+a4U = fU”’+gU”+ hU’+ kU+mV’+nV, 

u = t 7 = v = o ;  z = O , l ,  

( 1 + D + S ’ ( 1 + € 4 3  D + S  
eDe D ( 2 - D )  

b =  
De Dz  

a =  

-2De D ( 2 - 0 )  a2De D2 - c =  
( 1 + E 4 4  D + S  ( i + E 2 ) 2 ~ + ~ ’  

E €2 2E 3 2  f=-- 
( l + E Z ) ’  = ( 1 + € 2 ) 2 ’  

a=------- e =  
( l + e x ) ’  (1 + E X ) 2 ’  

3.2 2ea2 2a2eDe2 Dz( 1 + 2D) 

3E4 

h = -  +-- 
( 1 + 4 3  ( i + c z )  ( 1 + € 4 5  D + S  ’ 

( 1 + 4 4  ( i + S q  ( i + S q  D + S  
22a2 6a2~2De2 D(2  + D )  - - k =  

2a2s2De D( 1 + D )  n = -  2a2&e D( 1 + D )  
m =  

(1+Es)3  D + S  ’ ( 1 + 4 4  D + S  . 

(3.1 a )  
( 3 . l b )  

( 3 . 1 ~ )  

(3 . ld ,  e )  

(3. I f  1 

(3.1 9 3 )  

(3.1 k) 

(3.11) 

(3.lm, n )  

We recall in this context that V is the amplitude of the perturbation in the azimuthal 
velocity. In addition, the shear rate ceases to be constant across the gap beyond the 
small-gap limit and thus it is natural to define the Deborah number in (3.1) as 

252, A( 1 + €)2 

(1 + E ) 2 -  1 
De = 

The right-hand side of (3.2) is equal to the product of the constant shear rate across 
the gap and the polymer relaxation time in the limit of small gap. 

Note that the system defined by (3.1 a-n) above is now sixth order in contrast to 
the fourth-order system defined by (2.3). Sixth-order eigenvalue systems also occur 
in the case of centrifugally driven instabilities (see Drazin & Reid 1981) and result 
from the curvilinear geometry. Thus, we see that, in general, the same is true of this 
elastically driven instability, but in the strict small-gap limit the system is 
degenerate and reduces to (2.3). 

We have solved the system defined by (3.la-n) over a wide range of parameter 
space, concentrating on modest gap ratios (0 < E < 0.25) because all of the 
experimental results described in $5 and in our previous publications involved these 
gap ratios. In addition, for somewhat larger gaps, it is extremely difficult to calculate 
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FIGURE 4. The movement of the eigenvalues in the complex o-plane with the change in the gap 
ratio, 8 ,  for the Maxwell fluid. Four of the infinite series of eigenvalues are shown at the parameters 
corresponding to the critical conditions in the limit E + O .  As E is increased the values move 
symmetrically toward the middle of the figure. 

the critical condition for the instability (although it remains relatively easy to obtain 
neutral curves over a significant range of wavenumber) because the critical 
wavenumber increases sharply with the gap. These numerical difficulties will be 
discussed below. 

3.1. Maxwell Jluid,  S = 0 
We begin by considering the Maxwell fluid and its flow stability. Note, in this 
context, these are only model calculations and that we are not attempting to describe 
the flow behaviour of any specific viscoelastic fluid. However, we shall show that 
these calculations demonstrate all of the qualitative features of our more extensive 
calculations involving the more realistic Oldroyd-B model. In addition, it is shown 
in I1 that for S = 1 and in the small-gap limit, the behaviour of small perturbations 
is essentially identical to  that of the Maxwell fluid theory. In  $5,  we will 
experimentally investigate instability growth in fluids where S z 1.  Finally, the 
Maxwell fluid is used almost universally in large-scale computer simulations to  
predict the qualitative behaviour of viscoelastic flows. Thus, any instability in even 
these model problems is of great interest to those who are numerically simulating 
viscoelastic flows. 

As is discussed in the Appendix, in the small-gap limit there are four modes at the 
critical condition whose eigenvalues are complex conjugates and which include the 
two critical modes that are unstable just beyond this condition. Figure 4 shows a 
typical trace in the complex plane of the eigenvalues of these four modes as the gap 
ratio, E ,  is increased from zero to unity. The parameters have been chosen such that 
a = 6.7 and &De = 5.93, which correspond to  the critical condition in the small-gap 
limit. Thus, in figure 4, modes 1 and 2 are the critical modes which have zero 
imaginary eigenvalue as E + 0, and modes 3 and 4 are the remaining decaying modes 
characterized by the same real frequencies as the growing ones. Note that even when 
the gap ratio is not vanishingly small the eigenvalues corresponding to  the growing 
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FIQURE 5. The change in the neutral stability curves for the elastic instability of the Taylor-Couette 
flow of the Maxwell fluid as the gap ratio increases. Plotted is the modified Deborah number, dDe, 
vs. the wavenumber, a, for various values of the gap ratio, 0 < e < 0.1. 
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FIQURE 6. The critical wavenumber (0) and the critical modified Deborah number (0) vs. the 
gap ratio, E ,  for the Maxwell fluid (S = 0). 

and decaying modes respectively remain complex-conjugate pairs. This fact is not 
immediately apparent from the system (3.1), but, nevertheless, this was found for all 
eigensolutions at any value of the gap ratio. It follows that there exists a standing 
wave solution for each value of E as is required by the axial symmetry of the physical 
system. 

A summary of the neutral curves and critical conditions for the elastically driven 
instability of a Maxwell fluid a t  gap ratios 0 < E < 0.25 is given in figures 5 and 6. In  
these figures we have referred to the product &De as the modiJied Deborah number, 
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and we further note that this parameter plays a role analogous to the Taylor number 
in the centrifugally driven Newtonian instability. Figure 5 demonstrates that, in 
terms of &De, a finite-gap effects are monotonically stabilizing, generally increasing 
the value of dDe a t  which the flow becomes unstable to all wavelength perturbations. 
The stabilization is significant especially near the critical conditions, which are 
summarized in figure 6 as a function of gap ratio. We note from this figure that both 
the critical modified Deborah number and the critical wavenumber increase strongly 
with increasing gap ratio - the latter most rapidly. (Note by contrast that the critical 
frequency increases with increasing gap ratio but only slightly over the same range 
of gap.) Thus, over a fairly small range in the gap ratio, 0 < E < 0.25, the critical 
modified Deborah number increases from 5.932 (in the small-gap limit) to  12.81, 
while the critical wavenumber also increases from 6.7 to approximately 14.8. In  the 
former case, the increase in the modified Deborah number is remarkably linear over 
the entire range of gap. This result suggests that, provided the linear analysis 
describes the ultimate evolution of any vortex structure in the flow of a Maxwell 
fluid, the gap ratio has a marked effect on the size of such vortices with the 
characteristic vortex dimension shrinking as the gap ratio increases. 

The precipitous increase in the critical wavenumber with increasing gap ratio is in 
part responsible for our limiting these calculations to  gap ratios smaller than 0.25. 
For larger gaps, although it was reasonably easy to obtain neutral curves including 
rather large values of the wave number, i t  became extremely difficult to obtain good 
numerical approximatiions to the critical condition because of the very large values 
of a involved. At these large values of the wavenumber, numerical accuracy in 
determining the Jacobian for our iteration scheme as well as in the eigensolution 
during integration and orthonormalization degenerates. We note in this context that 
under these conditions the eigenvalue problem was found to be extremely stiff. This 
‘stiffness ’ is associated with the increasingly complex and rapidly oscillating radial 
eigenfunctions which are found a t  large wavenumbers (cf. the discussion below). For 
obtaining precise values of these critical conditions a t  larger gaps, one must either 
use an alternative numerical method or employ a large-wavenumber analysis. We 
shall not pursue either of these in the present communication. We note that this 
numerical problem is somewhat less severe in our calculations for larger values of S, 
which we consider in the next subsection. 

Although the effects of finite gap ratio are monotonically stabilizing in terms of the 
critical modijed Deborah number, the critical Deborah number continues to 
decrease monotonically as the gap ratio increases. Of course this decrease is not 
nearly as rapid as predicted by the small-gap theory. We shall discuss this behaviour 
below, in our calculations for Oldroyd-B fluids and in comparison to measured 
critical values of the Deborah number. 

Finally, we are interested in the change in the structure of the flow predicted by 
the linear analysis when the gap is increased from vanishingly small values. This is 
portrayed in figure 7, where we have plotted streamlines of the aforementioned 
standing wave structures (for 7 = 0) in the (2, 2)-plane for various gap ratios. There 
are at  least three important trends to note in analysing figure 7. First, and perhaps 
most obvious, the number of vortices filling the gap increases as the gap ratio 
increases. At a gap ratio of 0.25 as many as five vortices fill the channel a t  one time. 
Second, we note that the axial wavenumber a t  the critical condition has increased 
markedly and thus the axial wavelength of each cell decreases strongly with 
increasing gap. Finally, the strength of the vortices closest to the outer cylinder at 
first increases (as the vortices become of equal size) for E < 1 and then decreases with 
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FIQURE 7 .  The disturbance streamlines for the standing wave pattern in the (2, z)-plane at 7 = 0 for 
the Maxwell fluid. Results are shown for one half an  axial wavelength at the critical condition for 
various gap ratios 0 < E < 0.25 (drawn to scale). Note the decrease in the size of the critical axial 
wavelength and the increase in the number of vortices which fill the gap. 

increasing gap. These trends are reflected in the eigenfunctions as well. For the 
largest gap (0.25) there is almost no secondary flow near the outer cylinder (at 
r = 0). The decrease in the velocities near the outer cylinder is a reflection of the in- 
crease in the critical wavenumber. For these gaps the characteristic scale in the x- 
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FIQURE 8. The disturbance streamlines for the standing wave pattern in the (2,s)-plane for the 
Maxwell fluid at E = 0.1. Results are shown at a fixed axial location but in a time series showing 
the propagation of the vort.ex from the inner cylinder (left) toward the outer cylinder (right). 

coordinate is apparently no longer the gap width itself but is a function of the 
disturbance wavenumber. Thus, the calculations demonstrate that for larger gap 
ratios (and rotation of the inner cylinder only), we can expect disturbance vortices 
only relatively near the inner cylinder. To analyse this behaviour for larger gap ratios 
would require an analysis of very high wavenumbers which we shall not undertake 
here. 
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FIGURE 9. Neutral stability curves for an Oldroyd-B fluid (De vs. a, S = 3.75) in TaylorXouette 
flow for increasing gap ratio, 0 Q E Q 0.35. ~ , E = 0.014.17; ------,  E = 0.35; 0,  critical 
conditions listed in the table. 

In figure 8, for a gap ratio of 0.1, we show the time series of the vortices as they 
move through their characteristic oscillation. Again, these vortices propagate 
radially, but now the strengthening of the vortex as it approaches the centre of the 
gap is more marked, as is the decay of its strength as it continues to approach the 
outer wall. Note that for the gap ratio shown in this figure the strongest vortex at  
any particular time remains closest to the centre of the gap, while for the larger gap 
ratios (cf. figure 7) this is not the case. Thus, during propagation the vortex 
strengthens while staying relatively close to the inner cylinder, and then decays in 
strength through most of the gap as it approaches the outer wall. 

As we mentioned previously, we have presented calculations in this Section for the 
Maxwell fluid primarily to indicate the qualitative effects of increasing the gap ratio 
on the elastic instability in Taylor-Couette flow and to guide large-scale numerical 
simulations of the instability which have concentrated on upper-convected Maxwell 
models. The experiments which are discussed in $5 involve Boger fluids, whose 
rheology is better described by the more general Oldroyd-B model where S 2 1. In 
the next section then we shall briefly demonstrate the changes which occur in the 
predicted critical conditions when S is non-zero and finite-gap effects are considered. 
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FIGURE 10. Summary of calculations and data for the Oldroyd-B fluid at S = 3.75. The critical 
modified Deborah number vs. the gap ratio. Calculations are included for zero second normal stress 
difference ( Y2/Yl = 0) with finite-gap effects included (-m-) and for negative second normal 
stress difference (Y2/!Pl = -0.02) in the limit of small gap (-A-). In the latter calculation the 
Oldroyd-B model was suitably modified as described in $3. Included are the measurements of the 
critical modified Deborah number reported by Muller et al. (1989) (-m-), which are also shown 
in the table. The critical wavenumber vs. the gap ratio is also shown (-O-). 

3.2. Oldroyd-B Fluid;  S 2 1 

Figures 9-1 1 summarize our initial investigation into finite-gap effects on the 
stability of elastic Taylor-Couette flow a t  non-zero values of the parameter S. All of 
these calculations are for S = 3.75 and gap ratios ranging from 0 < e < 0.35. The 
value of S was chosen to correspond to  the fluid used in our previous experiments (see 
I) and is fairly typical of dilute Boger fluids. 

For the most part, these calculations provide the message that while the Maxwell 
fluid calculations indicate the qualitative eKects of increasing the gap on the stability 
of the elastic flow, these effects arc modified by the presence of a non-negligible 
solvent viscosity. This modification ranges from modest (in the case of predicting the 
critical Deborah number) to very significant (in predicting the critical wavenumber). 
Directly comparing these results to those for the Maxwell fluid (cf. figures 6 and 10) 
we find that the general trends are identical : as the gap ratio is increased, the critical 
modified Deborah number monotonically increases as does the critical wavenumber. 
However, the rate of change with increasing gap is slowed in the case of the Oldroyd- 
B fluid. In  particular, the critical wavenumber increases more slowly with gap ratios 
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FIGURE 11. The critical Deborah number us. the gap ratio as predicted by the linear stability 
calculations for the Taylor4ouette flow of an Oldroyd-B fluid (PIB) (S = 3.75). Theoretical 
predictions are shown in the limit of small gap (----) and for the theory including finite-gap effects 
(-O-, De;  -m-, modified De). Included are the data from Muller et al. (1989) (x), which are also 
shown in the table. 

than in the case of the Maxwell fluid (note that they are identical in the small-gap 
limit). Thus, we were able to extend our calculations up to  a gap of 0.35. For larger 
gaps, although it  was easy to obtain neutral curves, we could again not maintain 
sufficient numerical accuracy to unambiguously specify critical conditions because of 
the very large wavenumber a t  which the minima occur. I n  addition, from figures 9 
and 11 we see that the critical Deborah number monotonically decreases with 
increasing gap and the neutral curves become increasingly ‘flat’ and thus are 
characterized by very shallow minima. 

In  figures 10 and 11, we also present the experimental data from I, which includes 
measurements of the critical conditions for the onset of instability. I n  figure 10 we 
present the data in terms of the modified Deborah number and in figure 11 we present 
the critical values of the Deborah number itself. Note that in both instances the 
Deborah number is based on an average shear rate for a finite gap flow (cf. (3.2)) 
rather that the limiting constant shear rate for small gap. We have used the latter 
in our previous publications (cf. 11). I n  addition, we recall that in this comparison the 
characteristic relaxation time of the polymer is chosen to  be that measured in a 
transient stress relaxation experiment, rather than that determined from steady 
rheological measurements. These two relaxation times can differ by factors of 2-3 
(see I, 11, and $5). With these specifications then, for gap ratios greater than 
approximately 0.07, we find good agreement between the measured and predicted 
critical values of the Deborah number, which we note varies very slowly with 
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increasing gap ratio. We also find fairly good agreement in our predictions of the 
critical modified Deborah number which is more sensitive to errors in the measured 
gap ratio, shear rate, and fluid rheology (cf. figure 10). For gap ratios greater than 
0.07, the trend in the measured critical modified Deborah number is in good accord 
with the theoretical predictions - each increasing approximately linearly with gap 
ratio. For small gap ratios, however, there appears to be a precipitous decrease in the 
modified Deborah number with increasing gap. This conclusion must be tempered by 
the fact that we only have a few data points available and the critical Deborah 
numbers are extremely large. Nevertheless, this trend is apparently not predicted by 
the finite-gap analysis. If our data accurately reflects this trend, then it becomes 
apparent that a different mechanism causes a large change in the stability 
characteristics of the flow at small gap ratios. Such a mechanism has been suggested 
by other work in the stability of elastic fluids, and we shall consider this mechanism 
in the next section. 

4. The effect of second normal stress differences on the elastic instability 
In our previous investigations of this elastic instability as described in I and 11, the 

fluid rheology has been confincd to the Oldroyd-B model. Indeed, rheological 
measurements presented in I1 and in $ 5  support this choice in describing the steady 
flow of dilute Boger fluids. One rheological property, however, which is both difficult 
to measure and is identically zero in the Oldroyd-B model is the second normal stress 
difference, N,. In addition, there are strong implications from previous studies that 
N ,  may have a significant effect on the stability of an elastic flow even if i t  is very 
small relative to  the primary normal stress difference, N l .  Giesekus (1972), in an early 
attempt to describe vortices in an elastic Taylor-Couette flow at small Taylor 
numbers, found a theoretical elastic instability which would occur if the ratio of 
secondary to primary normal stress coefficients (i.e. Y2/Yl ,  where Yi is given by Ni 
divided by the square of the shear rate) times De2 was O(1) or greater. On the 
contrary, all measurements and theorctical predictions regarding Y,/ !PI show that 
this ratio is, in fact, small and negative or zero to within experimental error (Keentok 
et al. 1980; Larson 1988). For dilute Boger fluids, this ratio has been found to be 
particularly small, though we emphasize that accurate measurements are difficult to  
make. Molecular theory for dilute solutions predicts lY2/Yll < 0.02 a t  Deborah 
numbers of O(10) (Larson 1988). 

Although Giesekus found an instability which presumably has little physical 
consequence for elastic flows, he and others (Ginn & Denn 1969) demonstrated that 
the important parameter, which describes the effcct of the second normal stresses on 
flow stability is the parameter D e 2 Y 2 / Y l ,  or in terms of the modified Deborah 
number, (eDe2) Y2/Yle. Thus, although the ratio Y2/Yl  might be very small, as the 
gap ratio decreases the effects of the second normal stress coefficient will become 
important. It follows that our previous analysis needs to be modified to describe very 
small gap ratios. 

In the general stability equations derived in 11, second normal stress differences 
were added to the fluid rheology via a second polymer contribution to the stress 
which allowed the constitutive equation to include the second-order fluid as a special 
case. More general constitutive equations such as the ‘Oldroyd-4 constant model ’ 
and the ‘Oldroyd-8 constant model’ allow for second normal stresses and for the 
continuous variation of Y2/Y l ,  but are much more complicated and involve a 
number of new parameters to describe the fluid rheology. Our choice in I1 is a special 
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FIQURE 12. Neutral stability curves for the Taylor-Couette flow of a modified Maxwell fluid ( e b e  
us. a) .  The rheological model has been modified to include finite second normal stress differences 
and different stability bounds are pictured for -0.05 < 2Y2/Y1y,s < 0.05. -, Negative second 
normal stress; ..... , positive second normal stress. 

case of the Oldroyd-8 constant model, which is simple and which we expect to predict 
qualitatively the effects of second normal stress differences in highly elastic fluids 
because of its relation to the second-order-fluid model. Therefore, from 11, the small- 
gap limiting form of the new stability eigenvalue problem which includes the effects 
of second normal stresses is 

[U"-a2v] = 0 ( 4 . l a )  u"" - 2a2U" + a4U+ eDe2a2kU' + u2&ea$- 
0 2  

(D+S)2 

U = U ' = O ;  x = O , l ,  ( 4 . l b )  

( 4 . 1 ~ )  

where $ = 2Y2/Yl.5, and we have assumed that the ratio Y2/Yl is very small. This 
eigenvalue problem differs from the small-gap problem for the Oldroyd-B fluid only 
in the addition of the last term on the left-hand side of ( 4 . l a ) .  Note that we shall 
concentrate on the small-gap limit in this section because we anticipate, from our 
previous discussion, that it is in this limit that second normal stress differences will 
be most important. 

In figure 12 we present neutral curves for the eigenvalue problem (4 .1)  for the 
Maxwell fluid, S = 0, over a range of small negative and small positive $. For 
negative values of $ we find that the system is very strongly stabilized. Over the 
range 0 < $ < -0.05 the modified Deborah number increases by almost a factor of 
2 ( ! ) .  For a gap ratio of 0.1, this range corresponds to 0 < Y2/Yl < -0.0025, thus 
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indicating a very strong sensitivity. Furthermore, we note that the critical 
wavenumber sharply decreases over the same range of +, Although these effects are 
quite dramatic we can expect from our previous experience with finite-gap effects 
that while the Maxwell fluid calculations indicate qualitative trends, the cor- 
responding results for the Oldroyd-B fluid a t  values of S consistent with 
experimentally realizable fluids will be substantially modified. Indeed, this is again 
the case as we indicate in figure 13, where we present neutral curves for the Oldroyd- 
B fluid for S = 3.75. Clearly, although the effects of second normal stresses are 
stabilizing the effect is not nearly as dramatic; for example, the critical modified 
Deborah number increases by less than 50 % for values of + as large as - 1.5. In  
addition, the critical wavenumber decreases as @ becomes more negative, but the 
decrease is much more modest. 

The conclusions of this study are summarized in figure 10. Since the important 
parameter which describes the stabilizing effect of second normal stresses on the flow 
is $ = 2!P2/!Ple, it follows that if the fluid rheology is kept constant but the gap is 
decreased, then ultimately the second normal stress difference, if not identically zero, 
will dominate the development of an instability in this system. In figure 10 we have 
added to the finite-gap calculations (which excluded all second normal stress 
differences), our small-gap results for Y2/!Pl = -0.02 over the range 0.02 < 6 < 0.1. 
The value of the ratio !P2/Yl is consistent with the range of theoretical predictions 
and experimental measurements for dilute polymer solutions (Keenbk et al. 1980 ; 
Larson 1988). It has been chosen simply to illustrate that these stresses are strongly 
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stabilizing a t  small values of the gap ratio, but are negligible a t  larger gaps. This 
trend is consistcnt with our experimental measurements in the small-gap range. We 
havc not attempted to make a quantitative comparison because no measurements of 
the second normal stress coefficient characterizing the PIB fluid used in our previous 
experiments were made. In fact, since the error in all available techniques for 
measuring Y2/ Yl is a t  least as great as + O . O l  (see Magda et al. 1991), no quantitative 
confirmation of the effect of Y2/Yl a t  small gap ratios would be possible, even if the 
relevant rheological measurements were available. A qualitative comparison is 
possible however if a series of fluids can be prepared in which - Y2/Yl ranges from 
0 to 0.1 or higher. Since - Y,/!Pl has been found to increase with polymer 
concentration and to  exceed 0.1 for very concentrated solutions (Keentok et al. 1980) 
such a study would be possible by simply increasing the polymer concentration in 
solution. Finally, in this context, we note that, to our knowledge, no non-inertial 
instabilities have been reported in the Taylor-Couette flow of concentrated polymer 
solutions, which might be in part due to the relatively large values of - Y2/ Y1 in 
these fluids. 

5. Experiments 

5.1. Fluid preparation 
As rcmarked previously, our initial studies of the Taylor-Couette flow of a dilute 
polymer solution considered a single polyisobutylene (PIB)/polybutene solution. 
The preparation and rheological characterization of this solution, flow visualization 
of the Taylor-Couette transition, and the effect of gap on the critical Deborah 
number for the transition are described in I and 11. 

In the present experiments, we have chosen a different fluid system to investigate 
the effect of increasing polymer concentration on the Taylor-Couette transition. Like 
the earlier solutions, the new ones are 'Boger fluids' i.e. a small amount of a high- 
molecular-weight polymer was dissolved in a viscous, Newtonian solvent. The 
Newtonian 'solvent' was itself a solution containing 28% by weight of a 
monodisperse, low-molecular-weight (M,/Nn = 1.06, M ,  x 47 500) polystyrene (PS) 
dissolved in diocytl phthalate (DOP). Dioctyl phthalate is a theta solvent for P S  a t  
22 "C (Berry 1967) and a t  this concentration, the low-molecular-weight PS should be 
unentangled. Thus, this solution is Newtonian a t  the shear rates investigated, and 
can be considered a solvent for the high-molecular-weight species, which was a nearly 
monodisperse (M,/Mn = 1.20) polystyrene with M ,  w 2.0 x lo7. Both the low- and 
high-molecular-weight polymers were obtained from Pressure Chemical Company. 

The PS/DOP solvent and solutions containing 1000, 2000,4000, and 6000 p.p.m. 
of the 2.0 x 107Nw PS in the PS/DOP solvent were all prepared by the same 
procedure. The high- and low-molecular-weight PS were first dissolved in carbon 
disulphide, a good solvent with a low boiling point, and then DOP was added to 
produce a homogeneous mixture. The resulting solutions were then heated under 
vacuum a t  40 "C to remove the carbon disulphidc. 

5.2. Rheological characterization 
The solutions were characterized in steady shear and in cessation of steady shear flow 
on a Rheometrics System IV Mechanical Spectrometer using cone and plate fixtures. 
I n  all of the experiments, the temperature was maintained a t  22.0k0.5 "C by an 
existing convection oven. This degree of temperature control (i.e. f 0.5 "C) introduces 
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FIGURE 15. The first normal stress coefficient as a function of shear rate for the PS/DOP 
solvent and solutions containing 1000, 2000, 4000, and 6000 p.p.m. high-molecular-weight PS. 

an uncertainty of not more than f 5 % in the measured viscosities and first normal 
stress differences. Better control of the temperature would have required a major 
modification of the rheometer and the test cells, which seemed unwarranted for the 
present study. 

The steady shear viscosity 7 and first normal stress coefficient !PI for the five 
solutions are shown as a function of shear rate in figures 14 and 15, respectively. Note 
that the PS/DOP solvent displayed no shear thinning and no measurable normal 
stresses for shear rates as high as 30.0 s-l. For the solution containing the lowest 
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FIQURE 16. The solution viscosity at vanishing shear rate as a function of the concentration of 
high-molecular-weight PS. 
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FIQURE 17. The first normal stress coefficient at vanishing shear rate as a function of the 
concentration of high-molecular-weight PS. 

concentration of the high-molecular-weight PS (i.e. 1000 p.p.m.), shear thinning is 
apparent only in the first normal stress coefficient. As the concentration of high- 
molecular-weight PS increases, the viscosity and first normal stress coefficient 
increase and the shear rate at which shear thinning first appears decrease. The zero 
shear rate viscosity and first normal stress coefficient are shown as functions of 
concentration in figures 16 and 17. The ratio of the solvent to the polymeric 
contribution to the viscosity, S = rs/rp, and an Oldroyd-B relaxation time h = 
!PI0/27,, can also be determined from these data. This information is summarized in 
the first five columns of table 1. 
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FIGURE 18. The decay of the primary normal stress as a function of time on the cessation of steady 
shear flow. The flow was stopped at time t = 0. The symbols represent the measurements, the solid 
curve is the least-squares fit to the single exponential decay predicted by the Oldroyd-B model. 

Yl" A, = 5 
Concentration SO - s'=" 7 211, 4 (from NIP)) dyne s2 

(p.p.m.) ( P )  om2 7 P  (5) (5) 

0 539.0 0 0 0 
1000 614.0 213.0 6.3 1.27 3.75 
2000 717.0 1184.0 2.8 3.17 9.50 
4000 855.0 3232.0 1.6 4.97 12.2 
6000 1038.0 8088.0 1.0 7.96 18.9 

TABLE 1 .  Concentration dependence of rheological properties 

In addition, the decay of normal stress following the cessation of steady shear flow 
was measured for each fluid. This was done at  shear rates below those at  which the 
primary normal stress coefficient shows shear thinning in steady shear flow. The 
measurements were then fit to  the single exponential decay predicted by the 
Oldroyd-B equation ; an example of the measurement and the least-squares fit is 
shown in figure 18. This relaxation time is reported in column 6 of table 1. For the 
lowest-concentration fluids, this transient measure of the relaxation time is a factor 
of nearly three higher than the relaxation time determined from the steady shear 
properties. For the more concentrated fluids, the ratio of these relaxation times 
decreases slightly to 2.4. A discrepancy between these two measures of the relaxation 
time was previously noted with the PIB/polybutene Boger fluid in I and 11; i t  is 
indicative of the distribution of relaxation times which is present in the real fluid. A 
constitutive model containing a spectrum of relaxation times would thus provide a 
more accurate description of the real fluid than the (single relaxation time) Oldroyd- 
B model. However, the Oldroyd-B model provides a simple approximation that 
appears to capture many of the qualitative features of the real fluid behaviour 
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through a range of shear rates in which !PI and 7 are approximately constant. I n  fact, 
our recent analysis (see Larson, Muller & Shaqfeh 1991) of this instability using 
constitutive models which include a spectrum of relaxation times indicates that  none 
of the qualitative features of the transition are modified by the spectrum. In 
addition, we demonstrate that the spectrum gives only a slightly better quantitative 
comparison with our experimentally measured critical conditions. In this context, we 
note that Quinzani et al. (1991) have discussed the rheology of Boger fluids in great 
detail and have remarked on the limitations of characterizing the fluid rheology with 
a multimode Oldroyd-B model. 

Finally, the second normal stress coefficient was measured to be vanishingly small 
(i.e. !Pz/Yl = O . O f O . 0 1 )  for each of these solutions in an independent set of 
experiments. These data are reported elsewhere (Magda et al. 1990; Lee et al. 1991). 
Although these measurements are notoriously difficult, the techniques employed in 
this particular case were designed to render the highest degree of accuracy in 
evaluating Yz and thus the small experimental error. We can, therefore, with 
confidence ignore the effects of second normal stresses in these fluids, which we recall 
are most often stabilizing according to our theoretical predictions. All of the 
rheological data suggest that below some shear rate (at which the first normal 
stresses begin to  shear-thin), all the fluids behave essentially like Oldroyd-B fluids ; 
hence, S and h may be varied considerably by varying the concentration of the high- 
molecular-weight PS without otherwise affecting the rheology. It is the change in the 
stability characteristics with the variation of the parameters S and h which we wish 
to investigate in the experiments described below. 

5.3. Taylor-Couette experiments 
The Rheometrics System I V  was used with a custom-made Taylor-Couette cell to 
study the behaviour of the PS/PS/DOP test fluids in flow between concentric 
cylinders. The steady motor of the System IV was used to impose a constant rotation 
speed on the inner cylinder of the Couette device ; the torque on the stationary outer 
cylinder was measured using a Rheometric strain gauge transducer. The base of the 
inner cylinder was recessed so that a sharp edge was left around the circumference ; 
as a result air was trapped beneath the inner cylinder. There was a free surface a t  the 
top of the cell. The radii of the inner and outer cylinders were 14.5 and 16.0 mm, 
respectively, which gives a gap ratio E of 0.10. The cell was typically filled to  a height 
of 40 mm so that  the height-to-gap ratio was 27. The Couette cell was enclosed in the 
System I V  convection oven ; a temperature controller maintained the temperature at 
22.0 f 0.5 "C throughout the experiments. As in our previous studies in I and 11, the 
Taylor number was less than (Reynolds number less than lo+) throughout these 
experiments. 

A series of experiments was conducted as follows : the inner cylinder was brought 
impulsively from rest to a given rotation rate which was maintained for long times 
(relative to any fluid timescale) and the torque on the outer cylinder was measured 
as a function of time. At low shear rates, the torque reaches a plateau value within 
a few seconds and remains constant for as long as the fluid is sheared. This low-shear- 
rate torque plateau is always consistent with a steady shearing flow between the 
cylinders where the fluid viscosity is known from the cone and plate measurements. 
As with the PIB/polybutene solution, however, each of the PS/PS/DOP solutions 
displayed a critical shear rate above which the torque on the outer cylinder departed 
from that consistent with a purely azimuthal steady shearing flow between the 
cylinders. These critical shear rates are given in table 2. Note that in each case, the 
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FIQURE 19. The torque as a function of time for the Taylorxouette flow of the 1000 p.p.m. 
solution. The shear rate p was zero for times t < 0 and was i. = 7.8 s-l for 0 < t < 300 s .  

Dee 
Concentration s = 5 Y c  

(p.p.m.) % (s- ' )  from A, from A, Theory 

1000 6.3 7.4 9.4 28 35.2 
2000 2.8 2.8 8.9 27 27.8 
4000 1.6 1.4 7.0 17 24.7 
6000 1 .0 0.9 7.2 17 24.3 

TABLE 2. Concentration dependence of critical conditions 

0 > 46 

critical shear rate in Taylor-Couette flow is reached before any significant shear- 
thinning in the normal stresses is anticipated based on the cone and plate data in 
figure 16. These critical shear rates, expressed in terms of Deborah numbers (as 
defined by (3.2)), are given in columns 4 and 5 of table 2. The two different values 
for the Deborah number reflect the two different measures of the relaxation time. It 
is significant that if one takes the longer of the two relaxation times as the 
appropriate one, the critical Deborah number measured experimentally is in fairly 
good agreement with the theoretical value for all of the PS/PS/DOP solutions, 
although we generally overpredict the critical Deborah number (cf. table 2) .  The 
longer relaxation time also gave the appropriate critical Deborah number for the 
polyisobutylene solution (see I and 11). These experiments on two completely 
different fluids, which include a concentration series for the PS solutions give us 
confidence in the universality of the instability in dilute solutions and in our 
qualitative prediction of the critical Deborah number for onset. In  this context, we 
also mention that Laun & Hingmann (1990) have recently witnessed the elastic 
Taylor-Couette transition in their study of yet another Boger fluid - the fluid M1. 

A typical torque trace for the lowest-concentration PS solution subjected to a 
shear rate just above the critical value is shown in figure 19. The initial value of the 
torque is consistent with a steady azimuthal flow between the cylinders; it decreases 
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FIGURE 20. The torque as a function of time for the Taylor-Couette flow of the 2000 p.p.m. 
solution. The shear rate was zero for times t < 0 and was p = 3.9 s-l for 0 < t < 300 s. 
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FIGURE 21. The torque as a function of time for the Taylor-Couette flow of the 4000 p.p.m. 
solution. The shear rate was zero for times t < 0 and was p = 2.8 s-l for 0 < t < 400 s .  

slightly over approximately 140s and then becomes clearly time periodic with a 
period of roughly 33 s. This compared favourably to the predicted period of 28.8 s 
that one calculates for the oscillation of the streamline pattern. The amplitude of the 
torque oscillation continues to increase for the next 160 s until the imposed rotation 
is halted. 

For the more concentrated solutions, the mean amplitude of the torque increased 
significantly (relative to the torque consistent with a steady shearing flow) a t  shear 
rates above the critical. This is evident in comparing figures 19-22. Evidence of the 
time periodicity is much less clear in the flows of these more concentrated solutions ; 
however, there still appear to be oscillations in the torque amplitude with a period 
which is now substantially increased over that portrayed in figure 18. The period 
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Time (s) 

FIGURE 22. The torque as a function of time for the Taylor-Couette flow of the 6000 p.p.m. 
solution. The shear rate 9 was zero for times t < 0 and  was 9 = 1.4 s-l for 0 < t < 800 s .  

could not be accurately resolved for the more conccntrat,ed solutions since this 
would have required that (i) the entire system (temperature controller, motor 
speed, transducer) be stable for very long times relative to the period of oscillation, 
and (ii) the fluid sample be sheared for very long timcs, introducing the potential for 
shear degradation. The absence of a clear torque oscillation in the latter three of 
these figures may also be due in part, to the fact that, as the critical shear rate 
decreased with increasing concentration, it became somewhat more difficult 
experimentally to access shear rates that were only marginally above the critical 
value. 

6.  Conclusions 
To conclude we shall present a summary of the major predictions of the present 

research together with our supporting experiments. Our theoretical analysis of the 
elastic Taylor-Couette instability in § § 1 4  demonstrated two important effects of 
fluid rheology : that negative second normal stresses were stabilizing, especially for 
very small gap ratios ; and that increasing the solvent’s relative contribution to the 
viscosity was a stabilizing influence. Table 2 presents a comparison of the critical 
data measured for flow of the PS/PR/DOP fluids and the predictions of the linear 
theory. Because the second normal stresses were found experimentally to be 
vanishingly small for these fluids, our rheological models and analysis predict that 
increasing the polymer concentration only decreases the dimensionless parameter S 
and thus decreases the critical Deborah number. This is qualitatively reflected in the 
experimental measurements. However, the theoretical predictions arc, in general, 
overpredictions of the critical Deborah number, with the largest overprediction 
being approximately 25 %. Clearly more data need to be accumulated before more 
general conclusions can be drawn ; however, we further note that in our comparison 
with the data from our previous experiments on the PIB fluids (cf. figure lo), we 
again found an overprediction of the measured data for gap ratios of approximately 
0.1. For the PIB fluid, as the gap ratio was increascd the critical modified Deborah 
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number increased and the agreement between data and theory became better. Thus, 
in both scts of experiments the qualitative trends in the data are in agreement with 
the theoretical predictions, but the theory tends to overpredict the critical conditions. 
No explanation for this overprediction is offered at this time, although two obvious 
possibilities lie in our oversimplifying the time response of these elastic fluids in our 
rheological models and in our neglecting the development of subcritical disturbances. 
The former requires that we investigate fluids which are modelled via a spectrum of 
timescales and the latter requires a nonlinear analysis. At the present time, we are 
actively investigating the effects of including a spectrum of fluid relaxation times in 
our stability predictions (see Larson et al. 1991). 

Although increasing the polymer concentration in our PS/PS/DOP fluids 
destabilized the flow, clearly there exists a possible dual role for a concentration 
increase since we demonstrated in $ 3  that the presence of second normal stress 
differences which are negative (and which are usually associated with entanglement 
effects a t  higher concentrations) would stabilize the flow. Thus the fact that  the 
polymer concentration in these experiments is still small enough that there are no 
measurable second normal stress differences seems to be very important for the 
subsequent destabilization. In  this context, we demonstrated that the stabilization 
found in our experiments using PIB fluids at small gap ratios could be explained by 
small negative second normal stress differences. We anticipate, therefore, that if we 
continue to  increase polymer concentration, the flow of PS/PS/DOP fluids will 
strongly stabilize. We have previously alluded to the fact that  the elastic 
Taylor-Couette instability has never been reported in more concentrated solutions 
even though there has been a host of such experimental work. This is consistent with 
such a stabilization due to  a second normal stress difference. 

Although we have had some success in predicting the critical conditions for the 
elastic instability in Taylor-Couettc flow over a range of polymer concentrations and 
for two completely different Boger fluids, we have not made any direct measurement 
of the flow structure following transition. Thus, we have not been able to determine 
whether the linear analysis can predict the resulting flow field. These predictions of 
flow structure comprise a significant part of the work contained in this publication, 
and we look forward to experimentally evaluating the flow structure which we have 
visualized in our previous publications. Note that we have measured the frequency 
of the oscillations in the measured torque signal following the transition which 
occurred in our 1000p.p.m. PS/PS/DOP solution. The measured period of these 
oscillations was approximately 33 s and compares favourably with the period of the 
oscillations of the flow streamlines predicted by the linear analysis to be 28.8 s. We 
note that, although far from a confirmation of the flow structure, this result 
nevertheless points strongly to flow oscillations a t  a timescale comparable to  the 
relaxation time characteristic of the fluid, since all other timescales of the experiment 
were far removed from the measured period. 

In  summary, although a limited part of the theoretical results presented herein 
have been found to agree qualitatively with experimental results, clearly a more 
thorough experimental investigation is necessary in order to determine even the 
salient features of the instability flow structure. It is hoped that the present 
publication will spur other such investigations. 
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Appendix. Linear structure of the purely elastic transition in the small-gap 
limit 

We begin by further analysing the solutions of the stability eigenvalue problem 
which we derived in I1 and included in (2 .3 )  which governs the evolution of small 
disturbances in the inertialess Taylor-Couette flow of an Oldroyd-B fluid, viz. 

U””-2a2U”+a4U+a3AU’ = 0,  U = U’ = 0, x = 0 , l .  ( A  l a ,  b )  

The primes refer to derivatives with respect to the gap variable x, U is the amplitude 
of the radial component of the disturbance velocity (cf. (2 .1)  and ( 2 . 2 ) ) ,  a is the 
wavenumber, and the eigenvalue, A ,  is related to  the important dimensionless 
variables via the expression 

, D = ( l - iw)- ’ .  ( A  2a ,  b )  
a2( 1 + 20) ( D  + S )  - D3( 1 + D )  

u ( D + S ) ~  
A = 2(De)2 

In (A 2 )  the Deborah number, De = y A ,  where y is the constant shear rate across the 
gap (in the small-gap limit) and S = rs/rp, where S is the ratio of solvent to polymer 
viscosity in the fluid. Equations (A 1 )  and (A 2 )  have been made dimensionless as 
discussed in $ 2 .  

We demonstrated previously in I1 that there are an infinite series of complex 
conjugate eigenvalue solutions of (A 1 )  all of which are purely imaginary. The 
consequences of this for the stability of the system were discussed at  the time but the 
values of the complex frequency o and their relation to the values of A was not 
detailed. For the Maxwell fluid (8 = 0 ) ,  we have directly 

2 ~ ( D e ) ~  
a( 1 - iw)2 ’ 

A =  

from which it follows that there are four modes for any given set of conditions ; two 
corresponding to each of the complex-conjugate pair & ilA,J. These eigenvalues are 
conveniently divided into pairs, one pair of which can never grow in time (always 
decaying) while the other pair grows beyond a condition defined in our previous 
work, viz. 

Thus, the critical condition and critical modes are defined in terms of the eigenvalues 
of smallest absolute magnitude which we represent by A, (a ) .  Introducing cr = -iw, 
whose real part is the characteristic growth rate of the wave and whose imaginary 
part is the characteristic oscillation frequency, then one of the critical growing modes 
is defined by 

and another is defined by the conjugate, ug. Similarly, c,, and a; are decaying modes 
corresponding to the conjugate eigenvalue pair f A , ,  where 
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The presence of two growing modes B, and CT: in this system then introduces the 
question of structure selection present in symmetric systems subject to a Hopf-type 
or oscillatory bifurcation. If we restrict ourselves to only the critical mode (a 
restriction to which we shall return in due course) then these two modes represent 
travelling waves which move in opposite directions along the length of the coaxial 
cylinders. The eigenfunctions corresponding to the two growing modes contain a 
number of special relationships which can easily be demonstrated by inspection of 
(A 1)  above. For example, if we denote one of these solutions U ,  then i t  is easy to 
demonstrate that  the other eigensolution is its complex conjugate, U:. In  addition, 
it is not difficult to show the following: 

U,(x) = u;(-x), U,(x;a) = vg(x; -a), 
Re (U,) * even, Im (U,) * odd. 

The complex stream function corresponding to the approximately two-dimensional 

(A 5a,  b) 

disturbance flow in the (z,z)-plane is as defined in (2.4), viz. 

Y = @(x) exp [i(az-wt)], $ = iU/a. 

Thus, (A 1)  could apply equally well to the stream function for flow in the (2, 2)-plane. 
The mathematical expression for the stream function corresponding to one of the 

critical growing modes is 

- aFU = V, cos (az - wrt) + V, sin (az - w‘t) (A 6a) 

(A 6b) = U, cos 2 n ( ~  -;I + VP, sin 2n(~- -7 ) ,  

where the superscripts ‘r’  and ‘i’ refer to theleal and imaginary parts respectively. 
The subscript ‘ u ’  refers to the fact that the vortices which compose this mode are 
tilted ‘upward’ along the inner cylinder and they move upward as the mode 
propagates. 

If we assume that, rather than one of the possible travelling mode structures, the 
system chooses the possible standing wave structure, then the two equivalent critical 
modes will be present equally, and the resulting stream function will be produced by 
the sum of the two eigenfunctions. The real stream function for this standing wave 
pattern is given by the expression 

- a !P = V, cos 2n(Z - 7) + VG sin 2n(Z - T )  - U, cos 2n(Z + T )  + U, sin 2n(2 + 7 ) .  

The structure consists of radially propagating vortices as shown in figure 3 and 
discussed in $2. 

Since the standing wave structure does not propagate, the question arises as to  
whether travelling modes could be seen in the elastic Taylor-Couette system a t  zero 
Reynolds number. To partially investigate this question, one asks whether the 
instability (i.e. either of the growing modes) is convective or absolute (Huerre & 
Monkewitz 1985). In  the former case, one could presumably see travelling wave 
solutions under certain circumstances. In  the latter case, the instability would 
appear to spread from the initial perturbation(s) since under these circumstances the 
group velocity of a small wave packet centred around the most highly amplified wave 
would be zero. However, depending on the reflection of modes from the ends it is 
possible to still see travelling modes, and one then has to analyse the instability 
development in finite devices. 

In 11, we have demonstrated for the Maxwell fluid that for the two most unstable 

(A 7 )  

11 FLM 235 
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growing modes, the real frequency, w‘, is related to the imaginary frequency, wi, 
through the expression, wp = (w’+ 1). Thus, it is clear that  

where a,,, is defined as the wavenumber of largest wave growth. Equation (A 8) 
demonstrates that  the group velocity of a packet surrounding the most highly 
amplified mode is zero and thus the instability (at least for the Maxwell fluid) is an 
absolute one. Numerical studies confirm that this is also the case for the Oldroyd-B 
fluid, for all values of S studied. 

All of the discussion above describes the solution space for the eigenvalues and 
solutions for the small-gap limiting eigenvalue problem. In $3, we considered the 
effects of finite gap ratio, and it is interesting to discuss the change in this space as 
the gap ratio is increased. First, for all of our calculations involving the Oldroyd-B 
equations a t  any gap ratio, we find that there exist an infinite scries of eigenmodes. 
These modes can be ordered in the same manner as indicated in our discussion 
surrounding (A 4), namely there exists an infinite series of groups of four modes. Of 
these four modes, two are decaying and two are growing. In  addition, each of these 
constituent two-mode pairs is defined by complex-conjugate values of cr (cf. (A 4)). 
Finally, there exists a one-to-one correspondence between each of these four-mode 
groups and a similar four-mode set obtained from the solution of the small-gap 
problem (A 1). In the limit of vanishingly small gap ratio, these two sets become 
identical. Numerical searches of the complex plane (which involve finding the lines 
of vanishing real and imaginary parts of the relevant complex determinant and then 
searching for zero crossings) yielded no other eigenmodes. 

Finally, we should mention that for finite-gap flows, the relationship between the 
stream function and U for any mode changes slightly. For example, the expression 
for the stream function of the standing wave for finite gap corresponding to the 
small-gap limiting equation (A 7)  is 

-a!P = (1 +ex) [V, cos 2 n ( Z - ~ )  + & sin 2n(2--7)] 

+ (1 + E X )  [ - CT’, C O S ~ X ( ~ + T ) +  V, s in2n(Z+~)] ,  (A 9) 

where the added factors of 1 + E X  come from the finite curvature of the coordinates 
when the gap ratio is not vanishingly small. 
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